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LORENTZ TRANSFORMATION 

• Again consider the transformation problem. 

• The required transformation consists of equations 

allowing us to calculate the primed set of numbers                   

in terms of the unprimed set                 or vice versa.  

• The Lorentz transforms replace the Galilean 

transforms of position and time. 
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LORENTZ TRANSFORMATION 

• The Lorentz transformations will be proved at a later. 

• Again consider the case, 
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LORENTZ TRANSFORMATION 

• The Lorentz transformations for position and time 

are: 

 tvxx 








 


2c

xv
tt 

yy  zz 



LORENTZ TRANSFORMATION 

• The inverse of these equations give: 
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LORENTZ TRANSFORMATION 

• The transformation equations are valid for all speeds 

< c. 

• Consider a flash bulb attached to S′ that goes off, 
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LORENTZ TRANSFORMATION 

• At the instance it goes off the two frames coincide. 

At some later time the wavefront is at some point P. 
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LORENTZ TRANSFORMATION 

• r: distance to a point on the wavefront 

measured by an observer in S. 

• r′: distance to a point on the wavefront 

measured by an observer in S′. 
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LORENTZ TRANSFORMATION 

• r=ct 

• r′=ct′ 
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LORENTZ TRANSFORMATION 

• For simplicity, the general problem is stated so that 

the motion of P is along the x-x′ axis. 
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LORENTZ TRANSFORMATION 

• Radius of a sphere is                              in the S frame 

and similarly                                           in the S′ frame. 
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LORENTZ TRANSFORMATION 

• Substituting is                        into the previous 

equations and subtracting we get that, 

zzyy  ;
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LORENTZ TRANSFORMATION 

• We know that in the stationary frame, the distance 

travelled is given by 

 

• In the stationary frame, the distance travelled is 
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LORENTZ TRANSFORMATION 

• We know that in the stationary frame, the distance 

travelled is given by 

 

• In the stationary frame, the distance travelled is 

 

• Using equations 5,6,7 we can show that, 
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LORENTZ TRANSFORMATION 

• Summary: 
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LORENTZ TRANSFORMATION 

• Summary: 

 

 

 

 

 

• The Lorentz transformations can be verified by 

substituting equations 8,9 into the RHS of equation 5. 

 vtxx 











2c

vx
tt 

yy  zz 



LORENTZ TRANSFORMATION 

• To produce the Lorentz transformations for primed 

frame to the unprimed frame we substitute v with –

v. 
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LORENTZ TRANSFORMATION 

• For           , the Lorentz transformations reduce to the 

Galilean transformations. When            ; v/c <<1 and          
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LORENTZ TRANSFORMATION 

• Solution: 

• The question requires us to transform from the 

unprimed to the primed! Therefore use, 
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